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Convergence of threshold estimates for two-dimensional percolation

R. M. Ziff
Michigan Center for Theoretical Physics and Department of Chemical Engineering, University of Michigan,

Ann Arbor, Michigan 48109-2136

M. E. J. Newman
Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1120

and Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, New Mexico 87501
~Received 23 March 2002; published 29 July 2002!

Using a recently introduced algorithm for simulating percolation in microcanonical~fixed-occupancy!
samples, we study the convergence with increasing system size of a number of estimates for the percolation
threshold for an open system with a square boundary, specifically for site percolation on a square lattice. We
show that the convergence of the average-probability estimate is described by a nontrivial correction-to-scaling
exponent as predicted previously, and measure the value of this exponent to be 0.9060.02. For the median and
cell-to-cell estimates of the percolation threshold we verify that convergence does not depend on this exponent,
having instead a slightly faster convergence with a trivial analytic leading exponent.
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I. INTRODUCTION

Percolation@1# is one of the most fundamental and wide
studied systems in statistical physics. Theoretical studie
percolation models and applications of percolation theory
physical systems have spawned thousands of papers ove
last few decades. Even so, there are some substantial ga
our understanding of percolation. For example, we have
present no exact value for the positionpc of the percolation
threshold for site percolation on that simplest of tw
dimensional lattices, the square lattice. And in three dim
sions we have almost no exact results whatsoever. Bec
of this, numerical methods have played an important role
the study of percolation. In this paper we consider a clas
methods for estimatingpc for site percolation using finite
size scaling, and show how various estimates ofpc in this
class scale with varying system size in two dimensions.

The methods studied here for measuringpc are widely
used and are all based upon consideration of the cros
probability function RL(p) @1–3#. This function gives the
probability that a connected path crosses the system f
one boundary segment to another, at site occupation p
ability p and system size or length scaleL. Some examples
of these estimates are the following.

~1! The renormalization-group~RG! fixed-point estimate
pRG(L)5p* (L), where p* is the solution to the equatio
@2,4#

RL~p!5p. ~1!

~2! The average value ofp at which crossing first occur
@1,2#,

pav~L !5^p&5E
0

1

pRL8~p!dp512E
0

1

RL~p!dp, ~2!

where the last equality follows from integrating by parts. T
prime indicates differentiation with respect top.
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~3! The estimatepRc
(L) corresponding to the point wher

RL(p) equals its universal infinite-system valueRc
[R`(pc) ~which is determined by the system shape a
boundary conditions! @5#:

RL~p!5Rc . ~3!

For a square system, whereRc5 1
2 , this estimatep0.5(L) cor-

responds to the median of the distributionRL8(p). A related
estimateph1v(L) for rectangular systems is the value ofp at
which the horizontal and vertical crossing probabilities su
to unity @6–8#

RL
(h)~p!1RL

(v)~p!51. ~4!

This estimate is identical topRc
(L)5p0.5(L) when the

boundary is a perfect square.
~4! The estimatepmax(L), which is the value ofp where

RL8(p) reaches a maximum@or equivalently, whereRL(p) is
at its inflection point# @2#:

RL9~p!50. ~5!

~5! The cell-to-cell RG estimate, which is the point whe
two systems of different size have the same value ofR @2#.
One possible choice for this estimate,pc-c

(1)(L), is the value of
p at which

RL~p!5RL21~p!, ~6!

while a second choice,pc-c
(2)(L), is the point at which

RL~p!5RL/2~p!. ~7!

In order to use these estimates to determine the thres
precisely, we need to know the manner in which they co
verge topc as L→`. While it is possible to simulate very
large systems for which finite-size effects may be qu
small, the statistics for such simulations are still relative
©2002 The American Physical Society29-1
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poor because of the small number of samples that can t
cally be generated. In most cases, better results can be
rived by doing more simulations on smaller systems, and
requires that the finite-size behavior is characterized ac
rately.

It is usually assumed~based upon very general scalin
arguments! that all finite-system estimates of the percolati
threshold converge to the bulk valuepc as

pest~L !2pc;cL21/n, ~8!

where c is a system-dependent constant, andn is the
exponent governing the correlation lengthj, such that
j;up2pcu2n. ~For the two-dimensional systems we will b
looking at in this paper,n5 4

3 .! Well known exceptions to
this behavior are a few highly symmetric, self-dual system
such as bond percolation on a square lattice with a sq
boundary, and site percolation on a triangular lattice wit
rhomboidal boundary; in both these casesRL(p) is perfectly
symmetric aboutp5 1

2 for all L and all the estimates abov
give pc5 1

2 exactly. For these systems, the constantc above
is zero.

In Ref. @5#, however, it was argued that for non-self-du
systems with a square boundary, such as site percolation
square lattice~where because of the nonduality the estima
show finite-size effects!, the convergence of most of th
above estimates is faster than given by Eq.~8!. This is an
observation of some practical significance, since this part
lar system~site percolation on a square lattice with a squ
external boundary! is one of the most commonly studie
systems in percolation. Similar arguments also apply to o
symmetric two-dimensional crossing problems, such a
system with a rhomboidal boundary, which is common
used when simulating triangular and honeycomb lattices

The arguments of Ref.@5# were based upon the hypothes
that

RL~p!; f 0~x!1L21f 1~x!1••• ~9!

for largeL, wherex5(p2pc)L
1/n, f 0(x) represents the uni

versal part ofR, and f 1(x) represents the first-order corre
tion to the scaling limit. The choice ofL21 as the leading
order of the correction was based on numerical meas
ments ofR at pc , and can be derived from the assumpti
that the system is effectively slightly rectangular in sha
because of the different types of boundary conditions app
along the two principal axes@9#. For smallx, it was assumed
that

f 0~x!5a01a1x1a3x31•••, ~10!

f 1~x!5b01b1x1b2x21•••, ~11!

wherea05 1
2 by the symmetry and self-duality of the squa

boundary. The same symmetry also implies thatf 02 1
2 is an

odd function inx and hence thatan50 for all evenn.0, as
above.~To see thatf 02 1

2 is odd, note that for the perfectl
dual system of bond percolation on a square lattice,R2 1

2 is
an odd function ofx for all L, including L5`, and by uni-
versality, systems with other underlying lattices must beh
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the same way in the scaling limit.! In Ref. @5#, no particular
assumption was made about the behavior off 1(x), other than
its analyticity aboutx50.

Note that the form off 0(x) in Eq. ~10! is not entirely
universal, because the independent variablex should incor-
porate a metric factor which depends upon the underly
lattice @10,11#. For convenience, however, since we are co
sidering only one system of site percolation on a square
tice in this paper, we do not include that factor here.

Once the above assumptions, Eqs.~10! and ~11!, are
made, the convergence of the various estimates ofpc is
straightforward to analyze, and one finds that while the R
estimate does indeed converge according to Eq.~8! ~a result
that has been verified in many numerical studies!, the rest of
the estimates above should converge according to the fa
behavior

pest~L !2pc;cL2121/n, ~12!

where the constantc varies from estimate to estimate. Sim
lations reported in Ref.@5# for systems of size up to 102
31024 sites verified this convergence for the estimatep0.5 to
high accuracy. The estimatespc-c , pmax, andpav were stud-
ied in Ref.@5# using only exact enumeration results for sy
tems of sizes up to 737, which give polynomials forR ~see
the Appendix!, and while the behavior of these results w
found to be roughly consistent with Eq.~12!, the uncertainty
due to higher-order corrections was large.

Following the publication of Ref.@5#, Hovi and Aharony
@10,12# argued that the irrelevant scaling variables in t
renormalization-group treatment of percolation imply
slower leading-order convergence ofRL to its infinite-system
value, characterized by an exponentv, whose value was
deduced from the Monte Carlo work of Stauffer@13# to be
about v50.85. ~Note that Hovi and Aharony usedu1 to
denote the exponent we callv.! A variety of series expansion
results from the early 1980s were also analyzed to give
ues for this exponent ranging from 0.89 to over 1@14,15#.

The argument given by Hovi and Aharony implies that t
leading terms in the expansion ofRL(p) should in fact be

RL~p!; f 0~x!1L2v f v~x!1L21f 1~x!1•••, ~13!

where

f v~x!5c1x1c2x21•••. ~14!

Hovi and Aharony argued that the constant termc0 is zero
for a square system, because atpc there are no correction
terms for the square-lattice, bond-percolation system,
corrections due to irrelevant variables should be univer
They also argued thatf 1(x) should be even, so thatb150 in
Eq. ~11!, also by symmetry and self-duality. They discuss
various consequences of these assumptions, and pres
numerical evidence that the term containing the exponenv
is indeed the leading correction term, by showing that
behavior ofRL(p) for largex ~that is, forp5” pc) was better
fit with such a term than without it. However, the procedu
they used did not allow them to determine the value ofv
accurately, because of the numerical difficulty of calculati
9-2
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RL(p) precisely for allp. Furthermore, they did not study th
convergence of the other estimates given above.

Recently @16,17#, the present authors have shown th
quantities such asRL(p) can be studied efficiently for allp
by first finding the crossing probabilityRL,n in a microca-
nonical system of exactlyn occupied sites, and then convolv
ing with a binomial distribution to derive results for the co
responding canonical system thus:

RL~p!5 (
n50

N S N
n D pn~12p!N2nRL,n , ~15!

where N5L2 for site percolation on a square lattice. Th
microcanonical crossing probability is found using an e
cient cluster-joining algorithm employing data structur
based on trees, and a fast method is employed for chec
for percolation on the fly during the progress of the calcu
tion. ~While many of the ideas incorporated in this meth
were put forward previously@18–23#, to the best of our
knowledge, this was the first time that all of these comp
nents were combined in this way, for the purpose of find
R efficiently. In Ref. @16# we studied the function corre
sponding toR for the probability of a cluster wrapping
around the boundary of a periodic system on a torus. In
present paper, we describe how that method can be im
mented for the crossing of an open system, and we re
results from some large-scale simulations. The results a
us to determine accurately the behavior of all of the estima
above, and to test the theoretical predictions that follow fr
Eq. ~13!. As we will see, the appearance of the ‘‘irrelevan
term in the scaling of some estimates is confirmed, an
new, more precise value ofv is found.

The outline of the paper is as follows. In Sec. II we deri
the expected scaling behavior of the various estimates ofpc ,
assuming the form of Eq.~13!. In Sec. III we describe ou
numerical method, and in Sec. IV we present the results
our calculations. In Sec. V we give our conclusions.

II. CONVERGENCE OF ESTIMATES

If we assume Eq.~13! to be a correct description of th
behavior ofRL(p), it is straightforward to deduce the resu
ing convergence of the various estimates forpc . In the fol-
lowing, we derive the leading correction term for each e
mate, or the two leading terms when their powers are clos
each other.

~1! The RG fixed point: The relevant terms of Eq.~1! are

1
2 1a1x1a3x31•••5pc1xL21/n, ~16!

which implies

pRG~L !5pc1F pc2 1
2

a1
2

a3~pc2 1
2 !3

a1
4

1•••GL21/n

1O~L22/n!. ~17!

The term in brackets is the value ofx that is the solution to
f 0(x)5pc .
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~2! Average-probability estimate: Equation~2! gives

pav~L !512L21/nE
x0

x1
@ f 0~x!1L2v f v~x!1L21f 1~x!#dx,

~18!

wherex052pcL
1/n andx15(12pc)L

1/n, which are the val-
ues ofx at p50 and 1, respectively. Noting that, sincef 0(x)
is odd aboutf 0(0)5 1

2 and approaches 1 asx→`, we have

L21/nE
x0

x1
f 0~x!dx;L21/nx1512pc , ~19!

we then get

pav~L !5pc1L2v21/nE
2`

`

f v~x!dx1L2121/nE
2`

`

f 1~x!dx,

~20!

where we have extended the limits of the integrals to6`.
This result is also implied by Eq.~40! of Ref. @12#, for n
51. The order of the next correction depends upon
higher-order corrections to Eq.~13!.

~3! Median-p estimate: Equation~3! gives

1
2 1a1x1b0L211c1xL2v1•••5 1

2 , ~21!

which implies

p0.5~L !5pc2
b0

a1
L2121/n1O~L212v21/n!. ~22!

~4! Maximum estimate: Equation~5! gives

6a3x12b2L211~2c216c3x!L2v1•••50, ~23!

which implies

pmax~L !5pc2
c2

3a3
L2v21/n2

b2

3a3
L2121/n1O~L22v21/n!.

~24!

~5! Cell-to-cell estimate: Equation~6! gives

a01a1~p2pc!L
1/n1b0L211c1~p2pc!L

1/n2v1•••

5a01a1~p2pc!~L21!1/n1b0~L21!21

1c1~p2pc!~L21!1/n2v1•••, ~25!

which implies

pc-c
(1)~L !5pc1

b0

a1
nL2121/n1O~L212v21/n!. ~26!

Likewise, for pc-c
(2) we have

pc-c
(2)~L !5pc1

b0

a1~12221/n!
L2121/n1O~L212v21/n!.

~27!
9-3
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Thus, the scaling ofpRG, p0.5, and pc-c is unaffected to
leading order by the presence of the exponentv. However,
pav and pmax are affected byv to leading order, scaling a
L2v21/n, slightly slower than predicted in Ref.@5# ~order
L2121/n). Note thatb1 does not enter in any of these resul
so the leading scaling does not change ifb1 is equal to zero,
as was argued to be the case in Ref.@12#.

III. PROCEDURE

We have performed simulations to test the scaling hypo
eses above using the algorithm described in Refs.@16,17#.
Briefly, sites are occupied one by one in random order st
ing with an empty lattice. Occupied sites form contiguo
clusters, each of which is identified uniquely by the site la
of a chosen single site within the cluster, which we call t
‘‘root site.’’ Other ~nonroot! sites within a cluster posses
pointers that point either directly to the root site, or to oth
sites within the cluster such that by following a succession
pointers one can get from any site to the root. A newly add
site is considered to be a cluster of size 1, which is its o
root site, and bonds are then added between it and any a
cent occupied sites. The clusters to which sites at either
of such a bond belong are identified by following pointe
from them to their corresponding root sites, and if the ro
sites found are different we conclude that two different cl
ters have been joined by the addition of the bond. We rep
sent this by adding a pointer from the root site of one of
clusters to the root site of the other. Smaller clusters
always made subclusters of larger ones, and all pointers
lowed are subsequently changed to point directly to the r
of their own cluster. The net result is an algorithm that c
calculateRL,n ~and many other observable quantities! for all
values ofn in average running time which is of order the ar
of the lattice, orO(L2) for a square lattice.

In our previous calculations using this algorithm we me
sured the probability of the existence of a cluster that wr
around the periodic boundary conditions of a toroidal latti
In this paper we are interested instead in the existence~or
not! of a cluster that spans an open system along one g
direction. There are~at least! three efficient methods for de
tecting spanning of this kind, two of which are described
detail in Ref. @17# and all of which we have used in th
present work. In the first method, we use the same poin
based trick that we used in Ref.@16# to detect wrapping with
periodic boundary conditions, but start out with an (L11)
3(L11) lattice in which one horizontal row of sites is fixe
to be permanently empty and one vertical one is fixed oc
pied. Occurrence of a wrapping cluster in such a system
then exactly equivalent to the occurrence of a spanning c
ter in the horizontal direction in an open system with dime
sionsL3L.

In the second method, two complete rows of sites at
top and bottom of an open (L12)3(L12) lattice are fixed
permanently empty, and two columns ofL sites on the left
and the right sides of the lattice are fixed occupied. The
columns of occupied sites form two initial clusters on t
lattice. By following pointers from one site in each of the
clusters it is then simple to determine whether the two cl
01612
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ters have been amalgamated by other sites added bet
them: if they have the same root site they have been am
gamated, otherwise they have not. Performing this check
ter the addition of each site to the lattice, we can detect w
a spanning cluster on theL3L open lattice first appears. Th
two methods have comparable running times and give c
patible results. The second is somewhat simpler to imp
ment.

In the third method, which was used for the majority
the simulations here, we consider anL3L open lattice and
keep track of the minimum and maximumx and y coordi-
nates for sites in each cluster, updating their values as
essary when clusters are joined. Whenxmax2xmin5L21 for
a cluster, we know that the cluster spans the lattice in
horizontal direction, and similarly for vertical crossing. Th
method allows one to check for both crossing events sim
taneously, and it is also efficient and easy to program
similar method was used in Ref.@24# for simulations of the
Ising model.

Since in the present calculation we are interested only
the existence or not of a system-spanning cluster, we
stop the simulation once a spanning cluster is detected
spanning must also occur for all higher values ofn. This
produces about a 40% saving in running time. Each simu
tion then produces just a single number, the value ofn at
which a spanning cluster first appears~or two numbers if we
check for spanning in both the horizontal and vertical dire
tions!. Making a histogram of these values over many runs
the algorithm, we derive an estimate of the probabilityPL,n
that the system first percolates when the number of occu
sites reachesn. This probability is related to the desired fun
tion RL,n according toPL,n5RL,n2RL,n21, and hence

RL,n5 (
n850

n

PL,n8 . ~28!

Once theRL,n is determined,RL(p), the corresponding func
tion in the canonical percolation ensemble, is calculated fr
Eq. ~15!, with the binomial coefficients for largeN being
calculated by iterative multiplication@17#. The estimates
pRG, p0.5, and pc-c for the percolation threshold are the
evaluated directly according to Eqs.~2!, ~3!, and ~6!. The
estimate,pav, could be found directly by performing a nu
merical integral overRL(p), but a better method is to use th
following exact formula:

pav512E
0

1

RL~p!dp

512 (
n50

N S N

n DRL,nE
0

1

pn~12p!N2ndp

512
1

N11 (
n50

N

RL,n . ~29!

Using Eq.~28! this can also be written directly in terms o
PL,n as
9-4
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TABLE I. Various estimates ofpc from the simulations (L>7), whereNS is the number of samples, and from exact expressionsL
<7). The cell-to-cell estimate ispc-c

(1) for superscript (1) andpc-c
(2) for superscript(2). Errors in the numerical results are generally in the l

digit quoted.

L NS pRG pav5^p& p0.5 pc-c pmax A^(Dp)2& RL(pc)

2 ~exact! 0.618 033 99 0.533 333 33 0.541 196 10 0.577 350 27 0.221 108 32 0.579 2
3 ~exact! 0.619 260 13 0.552 380 95 0.559 296 32 0.620 734 47(1) 0.580 302 37 0.181 379 08 0.566 703 6
4 ~exact! 0.619 355 42 0.564 009 19 0.569 724 13 0.619 583 78(1) 0.584 399 52 0.154 834 66 0.555 588 4
5 ~exact! 0.618 095 29 0.571 145 67 0.575 810 07 0.613 506 05(1) 0.586 759 48 0.135 844 2 0.547 538 4
6 ~exact! 0.616 587 09 0.575 850 67 0.579 702 76 0.609 208 76(1) 0.588 256 53 0.121 512 46 0.541 467 0
7 ~exact! 0.615 117 36 0.579 119 47 0.582 351 30 0.606 075 99(1) 0.589 265 61 0.110 272 24 0.536 751 3
7 1.031010 0.615 118 0 0.579 120 4 0.582 351 9 0.606 081 2(1) 0.589 265 5 0.110 272 0 0.536 749
8 6.03109 0.613 765 6 0.581 486 6 0.584 239 4 0.608 314(2) 0.589 975 5 0.101 192 5 0.532 998
16 2.03109 0.606 902 2 0.588 781 9 0.589 885 8 0.598 828(2) 0.592 010 4 0.063 376 1 0.518 117
32 2.03109 0.601 631 9 0.591 424 6 0.591 835 2 0.594 825(2) 0.592 602 6 0.038 720 3 0.509 535
64 3.03109 0.598 148 5 0.592 317 9 0.592 465 7 0.593 413(2) 0.592 739 1 0.023 337 9 0.504 890
128 1.03109 0.595 983 7 0.592 608 7 0.592 661 3 0.592 952(2) 0.592 757 7 0.013 970 3 0.502 476
256 4.03108 0.594 674 2 0.592 701 3 0.592 720 8 0.592 808(2) 0.592 753 6 0.008 334 3 0.501 24
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pav512
1

N11 (
n50

N

(
n850

n

PL,n85
1

N11 (
n50

N

nPL,n ,

~30!

which means that the canonical average position of the
colation threshold isN/(N11) times the microcanonical av
erage (1/N)(nPL,n and no convolution is necessary to fin
its value. Higher moments of the distributionR8 can be
found in a similar fashion. For the second moment, for
ample, we have

^p2&5E
0

1

p2RL8~p!dp512
2

~N11!~N12! (n50

N

~n11!RL,n

5
1

~N11!~N12! (
n50

N

n~n11!PL,n . ~31!

To find whereRL9(p)50 for the estimatepmax, we make use
of the following result:

RL9~p!5 (
n50

N S N

n D pn~12p!N2nRL,n

3Fn~n21!

p2 2
2n~N2n!

p~12p!
1

~N2n!~N2n11!

~12p!2 G .
~32!

The above three results, along with Eq.~15!, demonstrate
further the advantage of calculatingRL(p) through the mi-
crocanonicalRL,n : quantities such asRL(p) andRL9(p) can
be calculated exactly at allp, while pav can be found without
introducing any error through numerical integration.

In the more familiar binary search method for findin
RL(p) @1#, p is increased or decreased to narrow the bou
on one’s estimate of the position of the percolation point
a given realization of the disorder. This search proces
stopped after some numberm of iterations, typically about
01612
r-

-

s
r
is

15, giving a resolution of 22m on the estimate forpc . Thus,
RL(p) is evaluated at only a finite set of points, and this ad
some uncertainty to the calculation, beyond the basic sta
tical error. Given that our microcanonical method is al
much faster than binary search due to its efficient clus
merging and percolation checking, there seems no reaso
use other methods when quantities such asRL(p) are desired
for a range of values ofp.

IV. RESULTS OF SIMULATIONS

Simulations were carried out for L
57,8,16,32,64,128,256. The results are given in Table
along with exact results from exhaustive enumeration
states for small systems withL<7. The polynomials from
which the exact results are derived are listed in the App
dix. We conducted the simulations atL57 to compare nu-
merical and exact results, and the agreement was found t
perfect within the statistical accuracy of the simulations. T
pseudorandom number generator used for the simulat
was the four-tap feedback generator known asR9689or GFSR4

@25#.
An error analysis for the simulation data indicates that

estimates ofpc are accurate to about six figures, and t
values ofR(pc) are accurate to four or five figures, as ind
cated in the table. We also simulated 2.43107 samples for a
system of sizeL5512, but the statistical accuracy of th
results was insufficient to add anything to the present an
sis.

Consider the results for the estimatepmax, whose conver-
gence is nonmonotonic. Its value starts belowpc for small
systems, then goes abovepc as the lattice size passes throu
L.100, and presumably converges topc from above asL
→`. Indeed, according to Eq.~24!, pmax has two correction
terms with closely spaced scaling exponents2v21/n
'21.65 ~using the value ofv from below! and 2121/n
521.75; it appears that these terms contribute more or
equally in the range of system sizes that we are consider
9-5
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The observed behavior is consistent with Eq.~24! if b2,0,
c2.0, and the two are roughly comparable in magnitu
@Note thata3,0 becausef 08(x) is at a maximum atx50.# It
is not possible to fit the exponents of Eq.~24! reliably to
these data.

The rest of the estimates are all monotonic, and lead
reasonably straight lines when viewed on a logarithmic p
of upest2pcu vs L, reflecting the leading power-law behavio
To provide a more sensitive representation of our data,
calculate successive~negative! slopes between pairs o
points for systems of sizes12 L and L, 2@ lnupest(L)2pcu
2 lnupest(

1
2 L)2pcu#/ ln 2 for the various estimatespest(L).

For these calculations we used the valuepc50.592 746 2
given in Ref. @16#, which is consistent with the data pre
sented here, but of somewhat higher precision than th
data would yield.

In Fig. 1 we show the plots of the successive slopes
estimatesp0.5(L), pc-c

(2)(L), andpav(L), as a function ofL2v

with v50.9. According to Eqs.~22! and ~27!, both of these
estimates should converge with a leading exponent of21
21/n and a next-order term of order2121/n2v, which
implies that the successive slopes should fall on a stra
line when plotted as a function ofL2v, with an intercept of
1.75. This behavior is indeed seen in Fig. 1, with measu
intercepts of 1.754 and 1.763, respectively.~Note that agree-
ment is not highly sensitive to the value ofv; if the data
were plotted as a function ofL21, the fit to linearity would
not be much worse.!

The successive slopes forpav(L) do not fall on as good a
straight line as the other estimates, presumably becaus
exponents2v21/n and2121/n of the two leading terms
in convergence are closely spaced@see Eq.~20!#. Extrapola-
tion to L5` is still possible however, and we find an inte
cept at 1/n1v51.6560.02, clearly different from the value
of 1.75 for the other estimates, implyingv50.9060.02, the
figure we have used above. The error bars are smaller
the size of the symbols for allL exceptL5256, as shown in
the plot. Althoughv is used in the abscissa of Fig. 1, i

FIG. 1. Absolute values of the pairwise slopes2@ lnupest(L)

2pcu2 lnupest(
1
2L)2pcu#/ ln 2, plotted as a functionL2v, for the

estimatesp0.5(L) ~circles!, pav(L) ~triangles!, andpc-c
(2)(L) ~squares!

with pc50.592 746 2.
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value there has little effect on the determination ofv from
the intercept ofpav(L).

We can also compare the coefficients for the leading
havior of estimates to their predicted values. For exam
the predicted value of the leading coefficient forp0.5, Eq.
~22!, is b0 /a150.423, using values ofb050.322~see below!
and a150.765 @5,12#. This compares favorably with the
value measured here of 0.436. And forpc-c

(2) , the coefficient
from Eq. ~27!, b0 /@a1(12221/n)#, should have a value o
1.04, which compares favorably with the measured va
1.02. Note that if we take the linear combination of these t
estimates~whose finite-size corrections are opposite in sig!,
(p0.51apc-c

(2))/(11a), wherea512221/n, the leading cor-
rection terms are predicted to cancel one another and
combination should have leading scaling ofL212v21/n

5L22.65. And indeed this combination is seen to conver
very quickly in our numerical results, with values 0.592 69
0.592 739, 0.592 745, and 0.592 746 forL532, 64, 128, and
256, respectively. The plot of these figures vsL22.65 given in
Fig. 2 shows linear behavior as expected, with an intercep
p50.592 7464(5), consistent with the best current figure
pc50.592 7462(1) @16#. Thus, by taking a combination o
estimates, we can improve the convergence rate for the o
system to the point where it becomes competitive with t
of the periodic system, in which the estimate with the b
convergence has the exponent211/4 @16#. This cancellation
of leading-order corrections between the two terms is
pected to be universal.

The results forpRG2pc and the standard deviations
5A^(dp)2&5A^p2&2^p&2 converge to zero with the pre
dicted exponent21/n520.75 @see Eq. ~8!#, as demon-
strated in Fig. 3, where we plot the~negative! successive
slopes as a function of 1/L. The latter represents expecte
higher-order scaling of these estimates. The intercepts
these curves~which give the negative of the scaling exp
nent! are at 0.749 and 0.763, respectively. The prediction t
s converges asL21/n is given in Ref.@12# and also follows
from the equations of Sec. II.

We also show in Fig. 4 a plot of the type introduced by
Stauffer, in whichpRG is shown as a function ofs, allowing
extrapolation to infinite system size to be carried out witho
knowledge of the value ofn @1#. This plot shows nearly

FIG. 2. Plot of (p0.51apc-c
(2))/(11a) vs L22.65, where a51

2221/n.
9-6
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linear behavior, with the last three points (L564, 128, and
256! well fit by the linepRG50.592 746 510.231 512s with
R250.999 997 9. The intercept is in excellent agreem
with the known value ofpc , although this high agreement
perhaps somewhat fortuitous, considering the slow con
gence of the RG estimate.

The last column of Table I gives the crossing probabil
at pc . The considerations in Sec. II imply thatRL(pc);1/2
1b0 /L with no contributions from the irrelevant scalin
variable @5,12,26#, and indeed an analysis of these da
shows good agreement with the behaviorRL(pc)51/2
10.320/L20.44/L21•••, yielding b050.32060.001. This
is nearly identical to the value 0.319 given in Ref.@5# ~where
larger systems, but with lower statistics, were generated! and
the value 0.3160.01 of Ref.@12#.

Besides the results presented here, the data on the m
canonical crossing functions can be used to study additio
properties ofR(p). For example, the derivativeR8(p) may
be calculated by a formula similar to Eq.~32!, and according
to Eq. ~13! this quantity should scale asL21/nR8(pc)5a1
1c1L2v at pc ~with no contribution of orderL21). Plotting
the results ofL21/nR8(pc) againstL2v for L516– 256, and

FIG. 3. Absolute values of the pairwise slopes
2@ lnupRG(L)2pcu2 lnupRG(L/2)2pcu#/ ln 2, with pc50.592 746 2
~triangles!, and of the standard deviation of the distribution ofp
~circles!, plotted as a functionL21. The lines are fit through all the
points.

FIG. 4. ‘‘Stauffer plot’’ of pRG vs s5A^(Dp)2&; the line is fit
through the leftmost three points and its equation is given in
text.
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adjustingv to get the best linear regression, we find an e
cellent fit (R250.999 985) with v50.8891, a150.7616,
andc150.3555. This value ofv is consistent with the result
above. The value ofa1 is slightly below the valuea1
50.765 found previously@5,12#; this difference can be at
tributed to the extrapolation to infinity done here@for ex-
ample, atL5256, the value ofL21/nR8(pc) is equal to
0.7842#. Many other results can be extracted in a simi
fashion once we have numerical data for the microcanon
RL,n .

V. CONCLUSIONS

We have studied the finite-size scaling of estimates of
percolation thresholdpc derived from the crossing probabi
ity RL(p) for site percolation on the square lattice. Our n
merical results confirm that different estimates converge
pc with a variety of scaling exponents as predicted by
scaling theory developed in Refs.@5,10,12#. In particular, we
have shown that the average threshold estimatepav con-
verges with a nontrivial exponentL2v21/n, whose origins lie
in the irrelevant variables in the renormalization-group tre
ment of the problem, and our results for this estimate prov
us with a direct measurement of that exponent. We findv
50.90602, somewhat higher than the value of about 0

e

TABLE II. Exact results forRL(p) expressed as polynomials i
p, for L52 to 7.

L RL(p)

2 2p22p4

3 3p314p426p529p6114p726p81p9

4 4p4112p526p6228p7222p8148p9166p102108p11

110p12144p13220p141p16

5 5p5124p6112p7262p8292p9241p101274p11142p12

1474p1321336p141172p15

2197p1614791p1729015p1818013p1924261p20

11559p212450p221103p23215p241p25

6 6p6140p7160p8280p92248p102276p111201p12

1944p132298p1412392p1522420p16

1548p17224 848p18138 688p1927540p201515 64p21

2117 312p222133 312p23

1588 639p242608 464p251683 62p261420 396p27

2455 910p281235 816p29262 454p30

13200p3113212p3221024p331120p342p36

7 7p7160p81150p9218p102490p112885p122318p13

11464p1413056p1521586p16

15584p1726520p18143 150p192153 589p20

1128 504p212407 257p221127 828 8p23

2124 319 3p241219 537 4p252698 363 0p26

1827 153 6p272699 066 9p281177 413 31p29

2113 444 31p302552 949 29p311916 429 05p32

1671 521 94p332374 255 572p34

1557 174 473p352463 108 229p361225 338 948p37

2471 353 60p382129 506 91p39

1111 688 48p402172 480 4p412106 730 5p42

1689 318p432196 565p44134 848p45

24391p461422p47228p481p49
9-7
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TABLE III. Exact results forRL(p,q) expressed as polynomials inp andq[12p, for L52 to 7.

L RL(p,q)

2 2p2q214p3q1p4

3 3p3q6122p4q5159p5q4167p6q3136p7q219p8q1p9

4 4p4q12160p5q111390p6q1011452p7q913416p8q815272p9q715414p10q613736p11q5

11752p12q41560p13q31120p14q2116p15q1p16

5 5p5q201124p6q1911418p7q1819958p8q17148 171p9q161170 391p10q151456 051p11q14

1942 077p12q131151 813 3p13q121191 788 7p14q111190 335 9p15q101148 630 8p16q9

1915 643p17q81446 538p18q71172 749p19q6152 871p20q5112 650p21q412300p22q3

1300p23q2125p24q1p25

6 6p6q301220p7q2913830p8q28142 200p9q271330 862p10q261196 683 2p11q251922 005 1p12q24

1349 865 68p13q231109 429 240p14q221285 726 952p15q211628 339 894p16q20

1117 065 617 2p17q191185 451 985 6p18q181250 279 719 2p19q171287 954 750 7p20q16

1282 477 386 8p21q151236 295 381 8p22q141168 645 572 0p23q131102 808 519 7p24q12

1536 110 144p25q111239 427 498p26q101915 847 20p27q91299 432 38p28q8

1832 262 0p29q71194 684 2p30q61376 992p31q5158 905p32q417140p33q31630p34q2

136p35q1p36

7 7p7q421354p8q4118637p9q401135 542p10q391153 891 8p11q381134 800 33p12q37

1948 508 47p13q361551 119 224p14q351269 732 922 5p15q341112 862 456 29p16q33

1408 335 758 12p17q321128 871 332 816p18q311357 226 485 246p19q30

1874 366 412 699p20q291189 748 991 302 9p21q281366 204 287 877 7p22q27

1629 886 980 328 3p23q261966 956 844 729 7p24q251132 585 068 442 89p25q24

1162 424 120 333 36p26q231177 768 801 987 90p27q221173 788 593 629 74p28q21

1151 728 375 886 87p29q201118 300 132 565 60p30q191823 920 775 762 1p31q18

1512 857 828 295 4p32q171285 516 297 755 8p33q161142 265 267 827 2p34q15

1634 745 588 151p35q141253 562 760 568p36q131905 980 448 53p37q121288 886 115 91p38q11

1818 938 813 8p39q101205 207 815 2p40q91450 849 373p41q81858 971 97p42q7

1139 838 16p43q61190 688 4p44q51211 876p45q4118424p46q311176p47q2

149p48q1p49
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found previously@13# but consistent with the~wide! bounds
set by series studies@14,15#. Our result is in good agreemen
with a renormalization-group result ofv50.915 found by
Burkhardt @27,32#. More extensive simulations could b
done to givev to higher precision.

Of the estimates considered here,pav is the only one that
shows the effect of the irrelevant exponent clearly. The e
matesp0.5 andpc-c are confirmed to converge asL2121/n, as
proposed previously@5#. The maximum estimatepmax is
found to exhibit nonmonotonic behavior, which can be e
plained by competition between correction terms w
closely spaced exponents2121/n and2v21/n.

The numerical results reported here were found usin
microcanonical simulation method, which allows one to c
culateRL(p) easily for anyp @16,17#. The various estimate
can then be found quickly to any desired degree of precis
by applying appropriate formulas, Eqs.~1!–~7!. This method
proves to be particularly advantageous for the estimatepav,
since this estimate depends on knowingRL(p) for all values
of p, the determination of which by most other methods
quires a great deal of work. From the microcanonical da
pav can be found without any calculational bias using E
~30!.

Having characterized the convergence rates of our var
threshold estimates, one can go back to older literature
find many instances where an anomalous rate of converg
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.
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was seen but not fully understood or recognized. For
ample, Reynoldset al. @2# derived an estimate ofpc which is
equivalent to ourpav from numerical data for the one-wa
crossing probability, which they denotedR1. Assuming this
estimate to scale as Eq.~8!, they plotted their results agains
L21/n ~their Fig. 13!. The resulting plot is seen to fall on
nearly vertical line, consistent with higher-order behavi
Fitting their data with the supposedL21/n scaling, they de-
duced a best estimate ofpc50.5931 in the large system-siz
limit. If however one assumes instead theL2v21/n scaling
predicted by the theory@10,12#, the intercept of their data
becomespc.0.5927, which is much closer to the curre
best estimate of this quantity.

Yonezawaet al. @6# plotted a quantity essentially equiva
lent to ourp0.5 as a function ofL21/n, and found apparen
agreement with this assumedL dependence~their Figs. 7 and
8!. The expectedL2121/n behavior is evidently too weak to
be distinguished fromL21/n within the errors on their nu-
merical data. Similarly, Huet al. @28# believed the cell-to-
cell estimatepc-c

(1) to be insensitive toL; again, the precision
of their work did not allow them to observe the higher-ord
scaling predicted by Eq.~27!.

It should be emphasized that the convergence beha
discussed here is specific to a two-dimensional system wi
square or rhomboidal open boundary, with the crossing
9-8
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fined as a path from one specified side to its opposite.
cause of the symmetry of this system, some terms cancel
allowing various higher-order corrections to become do
nant. For different boundaries~such as rectangular ones!, and
for higher-dimensional systems, the behavior will genera
be different. In those cases, most of our estimates will sc
as the conventionalL21/n, except perhaps the estimatespc-c
and pRc

. ~To employ the latter,Rc must be known, but we
have exact values only for rectangular and conformally
lated two-dimensional systems@29#.! The study of these
other systems is a subject for future research.

Another approach to measuringpc is to use periodic
rather than open boundary conditions. A partially perio
system in two dimensions is a cylinder, and crossing in t
system was studied in Ref.@12#. The fully periodic rectangle
is a torus, and the criterion of crossing is replaced by crite
involving the different topologically distinct ways in whic
clusters can wrap around the boundaries@30#. ~Some authors
@11,24,31# have also considered the percolation criterion
which a cluster has the full dimension of the lattice along
least one axis but does not necessarily wrap around.! In Ref.
@17# we showed that many estimates ofpc on the torus con-
verge a factorL faster than the estimates for the op
square—some converging as fast asL2221/n.

In conclusion, it is clear that the convergence of estima
for the critical occupation probabilitypc in percolation sys-
tems is highly dependent upon the nature of the estimate
well as the shape and boundary conditions of the system,
that the shrewd use of this fact can allow one to make v
accurate estimates ofpc and scaling exponents.
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APPENDIX: EXACT ENUMERATION RESULTS

In Table II we give the exact expressions for the cross
probability functionRL(p) for site percolation on a squar
ay
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lattice of sizeL3L, for crossing from one given side of th
square to the opposite side~such as left to right!. The results
for L52 to 5 were given previously by Reynoldset al. @2#.
Those forL56 andL57 were calculated previously for th
work reported in Ref.@5#, but reported in a different forma
@results were given forRL8(p) rather thanRL(p) itself#. From
the results here, one can with reasonable ease calculat
various estimates ofpc given in Table I using a symbolic
mathematics program such asMAPLE or MATHEMATICA . A
file containing these polynomials in forms readable by su
programs is available by email from the authors.

An alternative way to represent these results is as a se
in pnqN2n, whereq512p and N5L2. The transformation
can be achieved by substitutingp→1/(11r ), multiplying by
(11r )NpN, expanding, and replacingr→q/p. The results
are given in Table III.

This is also the form that Reynolds@2# used in their series
for R2(p) to R5(p). From the present point of view, thes
series are interesting because they are precisely in the
of Eq. ~15!, so that the coefficientcL,n of pnqN2n in RL(p,q)
above is related to the microcanonical crossing probab
RL,n simply by

RL,n5
cL,n

~n
N!

5
cL,nn! ~N2n!!

N!
. ~A1!

That is,cL,n represents the number of configurations withn
occupied sites that satisfy the crossing criterion, out of a to
of (n

N) possible configurations of then occupied sites among
the N5L2 sites of the lattice. For example, of th
16!/(6!10!)58008 possible configurations of 6 occupie
sites on a 434 lattice, exactly 390 are percolating by cros
ing in one direction@from the third term inR4(p,q)#, yield-
ing a microcanonical probability R4,65390/8008
50.048 701 . . . . Likewise, for n516 occupied sites on the
434 system, there is exactly one percolating system ou
one total system.

Thus, the polynomials given in Table III represent t
microcanonicalRL,n for L up to 7.
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